Principal component analysis: A generalized Gini approach
نویسندگان
چکیده
A principal component analysis based on the generalized Gini correlation index is proposed (Gini PCA). The PCA generalizes standard variance. It shown, in Gaussian case, that equivalent to PCA. also proven dimensionality reduction matrix, relies city-block distances, robust outliers. Monte Carlo simulations and an application cars data (with outliers) show robustness of provide different interpretations results compared with variance
منابع مشابه
General practitioners\' views on key factors affecting their desired income: A principal component analysis approach
Background: Based on the target income hypothesis, the economic behavior of physicians is mainly affected by their target income. This study aimed at designing an instrument to explain how general practitioners (GPs) set their desired income. Methods: A self-administered questionnaire of affecting factors on GPs' target income was extracted from literature reviews and a small qual...
متن کاملGeneralized mean for robust principal component analysis
In this paper, we propose a robust principal component analysis (PCA) to overcome the problem that PCA is prone to outliers included in the training set. Different from the other alternatives which commonly replace L2-norm by other distance measures, the proposed method alleviates the negative effect of outliers using the characteristic of the generalized mean keeping the use of the Euclidean d...
متن کاملPrincipal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملGeneralized Multilevel Functional-on-Scalar Regression and Principal Component Analysis
This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating phys...
متن کاملGeneralized Principal Component Analysis: Projection of Saturated Model Parameters
Principal component analysis (PCA) is very useful for a wide variety of data analysis tasks, but its implicit connection to the Gaussian distribution can be undesirable for discrete data such as binary and multi-category responses or counts. We generalize PCA to handle various types of data using the generalized linear model framework. In contrast to the existing approach of matrix factorizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Operational Research
سال: 2021
ISSN: ['1872-6860', '0377-2217']
DOI: https://doi.org/10.1016/j.ejor.2021.02.010